
JOURNAL OF COMPUTATIONAL PHYSICS 123, 341–353 (1996)
ARTICLE NO. 0028

An Impulse-Based Approximation of Fluid Motion due
to Boundary Forces

RICARDO CORTEZ

Department of Mathematics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

October 4, 1994; revised June 19, 1995

order blobs and in which the dipole strengths are updated
with the appropriate equation.The motion of an incompressible, inviscid fluid in a region sur-

rounded by a massless, elastic membrane can be approximated by McCracken and Peskin [19] applied a vortex-grid hybrid
transmitting the effect of the boundary forces to the fluid through method to the study of blood flow through heart valves.
vortex dipoles. We present a Lagrangian numerical method for ap- This method made use of a simple vortex layer to introduce
proximating this motion based on the impulse (a.k.a. magnetization)

the effects of normal boundary forces over each time stepvariables introduced by Buttke. In particular, we explain the corre-
and a layer of discrete vortex dipoles to introduce thespondence between impulse variables and vortex dipoles with a

prescribed dipole moment. Numerical examples that illustrate the effects of tangential forces. By a discrete vortex dipole
application of impulse variables in this context are given. Q 1996 we mean a pair of vortex blobs with equal but opposite
Academic Press, Inc. strengths a small distance apart.

Our method for introducing the effects of elastic forces
on the fluid is based on impulse rather than vorticity. This1. INTRODUCTION
feature is attractive since the boundary forces naturally
interact with the fluid by imparting impulse and theseThere are many interesting situations in which a fluid
forces are easily accounted for in the method. Furthermore,flows in a region bounded by elastic membranes. Examples
the use of a discrete approximation of dipoles is no longerof such situations are air flow inside the lungs, blood flow
necessary because the impulse variables in fact representthrough the heart, and water sloshing inside a balloon. A
dipoles.key feature of these examples is the interaction between

Other uses of vortex dipoles or simple vortex layers onthe elastic forces that arise on the boundary as the mem-
free surfaces are found in [2–4, 14, 16, 24]. Baker, Meiron,brane stretches, and the fluid inside. When the fluid is
and Orszag [3, 4] modeled the motion of a periodic freeincompressible, these forces immediately affect the motion
surface between two incompressible, inviscid fluids of dif-of the entire fluid; in turn, this motion changes the configu-
ferent densities using vortex dipoles on the free surface.ration of the boundary which determines the forces. Our
No surface forces were included in their application. Theirgoal is to solve problems with this type of force–fluid inter-
method required the formulation of an evolution equationaction.
for the dipole strengths which was derived from Bernoulli’sOne approach for the numerical treatment of the interac-
equation. The impusle field in our method equals the dipoletion between boundary forces and fluid uses the forces to
strength multiplied by a unit vector normal to the surface,generate vorticity on the boundary and lets the vorticity
and so the equation of motion for impulse updates theinduce the motion of the fluid (see [20, 19]). Typically the
dipole strengths appropriately. The problems illustrated inboundary is idealized as infinitely thin. This gives rise to
the present paper feature a single fluid (no density jumps)a situation in which forces are singular since they act on
and surface forces. We point out that the methods founda set whose dimension is lower than the spatial dimension
in [3, 4, 14, 24] use desingularizing techniques to evaluateof the problem. The singularity of the force field has been
the principal value integrals for the velocity at the interfacea source of instabilities (see [19]). Mendez [20] tracked the
and the vorticity (or dipole) strength. The method adoptedmotion of an elastic ellipse immersed in an inviscid fluid
here is to use blobs in the discretization of the integrals.by introducing pairs of vortex blobs along the boundary

Buttke [7] recently proposed a Lagrangian numericalto approximate dipoles. The blobs used were of low order
method for incompressible Euler flow which uses a compu-and questions regarding changes of the dipole strengths
tational variable that he called velicity. The method isremained unresolved. In the present paper we improve on

these ideas by presenting a method which uses higher- based on the Hamiltonian formulation proposed by Osele-
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dets [21] which is valid in any number of space dimensions. away from the support of j, restricting m to a set which
contains the support of j.Velicity, the variable conjugate to position, is equal to

impulse density for fluids with constant density (see [5, 7]), Impulse, I, is the total amount of linear momentum re-
quired to start the given motion from rest (see [5]). In twoso here we refer to this computational variable simply as

impulse. The same variable is also known as magnetization dimensions and under the assumption of uniform fluid
density r, impulse is defined by the equation(e.g., [8, 10]).

In two dimensions the discretization of the impulse field
in terms of impulse blobs is equivalent to representing the I 5 r E

R2 ( y, 2x)j dx.
vorticity in the flow by vortex dipoles with a given dipole
moment. This interpretation of impulse allows us to esti-

To see that m is equal to impulse density, assume that mmate the accuracy with which a given impulse discretization
has compact support, use the definition of impulse, andapproximates a configuration of vortex pairs; and as a
(2) to obtain (in two dimensions)consequence, how this approximation deteriorates in situa-

tions when the vortices of a pair drift away from each
I 5 r E

R2 ( y, 2x)j dx 5 r E
R2 ( y, 2x)(­xm2 2 ­ym1) dxother. In this paper we explain the equivalence of vortex

dipoles and impulse blobs, the relationship between the
strength of an impulse vector and the dipole moment, and 5 r E

R2 m dx,
we illustrate the usefulness of impulse variables by pre-
senting examples in which we compute the motion of a where the last equality follows after integration by parts.
fluid confined to a region with elastic boundary. The same result is true in three dimensions. From this

In Section 2 we give the definition of impulse density point on, we refer to m as impulse.
and its relation to the fluid velocity. We also write the The evolution equation for m can be derived using Eq.
equation of motion for impulse and show its consistency (2) and the identities:
with Euler’s equations. In Section 3 we present the main

(ID1) =(Asuuu2) 5 (=u)Tu,ideas of Buttke’s method. Section 4 displays the equiva-
lence between discrete impulse in two dimensions and vor- (ID2) (D/Dt)=f 5 =(Df/Dt) 2 (=u)T =f,
tex dipoles with a prescribed dipole moment. Section 5

where =u is a matrix with entries (=u)ij 5 ­ui/­xj , T denotescontains the discussion of boundary forces, and Section 6
the transpose, and D/Dt 5 ­t 1 u ? = is the materialcontains two numerical examples.
derivative. Solving for u in Eq. (2) we write

2. DEFINITION AND EVOLUTION OF IMPULSE
Du
Dt

1 =p 5
Dm
Dt

2
D
Dt

=f 1 =p
Consider the incompressible Euler equations in d-di-

mensional free space (assuming uniform unit density)
5

Dm
Dt

1 (=u)Tm 2 = SDf

Dt
1

1
2

uuu2 2 pD .
ut 1 u ? =u 5 2=p 1 F, = ? u 5 0, (1)

It is easy to see that if u 5 =x, where x 5 2f, then
where u is the fluid velocity, t is time, ut is shorthand

=(Df/Dt 1 Asuuu2 2 p) 5 0 from Bernoulli’s equation. This
notation for ­u/­t, = ? u 5 0 is the incompressibility condi-

serves as motivation for letting m evolve according to
tion, p is the pressure, and F represents external force. We
define m as a vector field equivalent to u up to a gradient; mt 1 u ? =m 5 2(=u)Tm 1 F. (3)
that is,

For a derivation of the continuous Hamiltonian formula-
m 5 u 1 =f. (2) tion of incompressible fluid flow using impulse variables,

see [18, 17, 21]. We remark that in the case of viscous fluid
An immediate consequence of Eq. (2) is that the vorticity with viscosity n, the equations of motion for impulse, Eq.
j can be found through u or m by j 5 = 3 u 5 = 3 m. (3), are replaced by (see [7, 12])
Furthermore, for an arbitrary function f, u is the diver-
gence-free part of the Hodge decomposition (see, e.g., mt 1 u ? =m 5 2(=u)Tm 1 nDm 1 F. (4)
[11]) of m in free space. The fluid velocity u is uniquely
determined from m by finding the free-space projection of 3. THE NUMERICAL METHOD IN TWO DIMENSIONS
m onto the field of divergence-free vectors, denoted by
u 5 Pm. If the vorticity is confined to a bounded region, A Lagrangian numerical method based on impulse can

be outlined in the following way: (1) approximate the im-then the function f can be chosen to cancel the velocity
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pulse field by some discretization, (2) find u from m via a where the subscript r represents a partial derivative with
respect to r. Ultimately we only need the gradient of c,projection, (3) advance the particles and update the im-

pulse strengths. not c itself, so we solve the last equation for cr and obtain

3.1. The Approximate Impulse Field
cr(r) 5

1
r
Er

0
qfd(q) dq 5

1
2fr

F(r),
Let m(x) represent the exact impulse field. Following

Buttke [7], we approximate m(x) by a collection of impulse
blobs m̃(x) 5 o m jfd(x 2 x j) centered at locations x j. The where F(r) 5 euxu#r fd(uxu) dx is called the shape factor and
impulse strengths m j are initially set equal to m(x j) depends only on the cutoff function.
multiplied by an area element. The cutoff function fd is a 3. We can now find an expression for f, which we
smooth approximation to the delta function and, as in a differentiate to find =f and finally let u 5 m̃ 2 =f. The
vortex method, is chosen to satisfy certain conditions for final result in terms of the shape factor is
the purpose of accuracy. In particular, fd(x) 5 d22f1(x/d),
where the cutoff radius d is a small but fixed parameter
and f1 is a smooth function satisfying: u(x) 5 O m j FrF9(r) 2 F(r)

2fr2 G
(5)1. e f1(x) dx 5 1

2. e xaf1(x) dx 5 0, 0 , uau , k
2 x̂ j(m j ? x̂ j) FrF9(r) 2 2F(r)

2fr2 G ,
3. e xaf1(x) dx , y, uau 5 k.

Here a is a two-dimensional multiindex and k is a fixed
where x̂ j 5 (x 2 x j)/r and r 5 ux 2 x ju.positive integer. A function satisfying the conditions out-

lined above is referred to as a kth-order cutoff function The particle positions are advanced using dx j/dt 5 u(x j).
because in the context of vortex methods, the replacement
of the vorticity j(x) by e j(y)fd(x 2 y) dy causes changes 3.3. The Update of Impulse Strengths
in the velocity field which are O(d k). For a detailed analysis

The impulse strengths must be updated with an equationof cutoff functions see [6]. In this paper we use the radially
approximating Eq. (3). To this end we differentiate thesymmetric function f1(r) 5 (1/2f)(e2r2

1 Ase2r2/2) of order
expression for u to obtain the matrix =u, and we calculate2. The appropriateness of adopting cutoff functions from
any forces at x j. The impulse strengths are updated usingvortex theory into impulse methods is discussed in Sec-
dm j/dt 5 2(=u)Tm j 1 f j, where f j is the force on the piecetion 4.
of boundary represented by the jth particle (see Section 5).

In summary the algorithm looks like this:3.2. The Particle Velocities Due to Impulse

1. Given m̃(x) 5 o m jfd(x 2 x j), find expressions forIn order to update the impulse particle positions, we
u(x) 5 Pm̃ and =u.must compute the velocity at each particle location. The

projection, the process of finding the velocity u in terms 2. Update the particle positions and impulse
of m, can be done exactly for a good choice of radially strengths with
symmetric function fd . This is done as follows:

1. The velocity field u is related to impulse by an ap- dx j

dt
5 u(x j) (6)

proximation of Eq. (2); namely m̃ 5 u 1 =f, for some f.
Take the divergence of this equation to obtain dm j

dt
5 2(=u)Tm j 1 f j. (7)

Df 5 = ? m̃ 5 O m j ? =fd(x 2 x j).

4. IMPULSE AND VORTICITY IN TWO DIMENSIONS
Suppose that a function c satisfies Dc 5 fd , then we could
write f 5 o m j ? =c. This observation is important because In this section we explain the connection between a
c does not depend on the flow and so c can be found once collection of impulse blobs and a collection of vortex di-
and for all. poles. This connection leads to the conclusion that a dis-

2. Since fd is radially symmetric, the equation for c can crete vortex dipole (two vortex blobs a small distance
be written in polar coordinates apart) induces a velocity field which is a centered-differ-

ence approximation of the velocity field induced by an
impulse blob which uses the same cutoff function. This1

r
(rcr)r 5 fd(r),

observation allows us to import into the analysis of the
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of impulse normal to the curve. Thus the dipole strength
is the magnitude of the impulse vector with sign deter-
mined by the direction of impulse relative to the unit
normal.

Boundary forces naturally interact with the fluid by im-
parting impulse. The impulse blobs of our numerical
method are precisely what is needed to introduce the effect
of forces on the fluid by the use of vortex dipoles, sinceFIG. 1. Vortex pair approximation to impulse vector.

impulse blobs are vortex dipoles. Furthermore, our method
includes equations for the evolution of the dipole strengths.
Previous methods did not include an adequate system for

impulse method the role of the cutoff function in the accu- updating dipole strengths and used vortex pairs to approxi-
racy of vortex methods. mate dipoles which introduced an additional error, corre-

A collection of impulse blobs, m̃(x) 5 oj m jfd(x 2 x j), sponding to the centered-difference approximation of the
immediately defines the vorticity in the flow. Since j 5 derivative in (8).
= 3 m̃, we have The velocity at an arbitrary point x due to a collection

of impulse blobs is given by Eq. (5)
j(x) 5 O

j
=fd(x 2 x j ) ? (m j 3 ẑ),

u(x) 5 O m j FrF9(r) 2 F(r)
2fr2 Gwhere ẑ is the unit vector normal to the plane. Each term

in the sum is um ju multiplied by the derivative of fd in the
direction of (m j 3 ẑ). Let h j be a vector of magnitude h j

2 x̂ j(m j ? x̂ j) FrF9(r) 2 2F(r)
2fr2 G .

in the direction of (m j 3 ẑ) (see Fig. 1) and write the
derivative of fd in the direction of h j as

This equation can be manipulated to look like

j(x) 5 O
j

um ju lim
h jR0

fd(x 1 h j 2 x j) 2 fd(x 2 h j 2 x j)
2h j

(8)
u(x) 5 [DKd(x)](m 3 ẑ), (9)

5 O
j

lim
h jR0

j j[ fd(x 1 h j 2 x j) 2 fd(x 2 h j 2 x j)], where Kd(x) 5 (2y, x)TF(r)/2fr2is the kernel of the vortex
method. The derivative in (9) is the result of taking the
limit of the velocity field due to two vortex blobs as their

where the vortex strenths j j are found with the formula separation vanishes while maintaining a constant dipole
j j 5 um ju/2h j. Expression (8) shows that the vorticity in- moment.
duced by the collection of impulse blobs is exactly the It is important to point out that a collection of impulse
vorticity generated by a collection of smoothed vortex di- variables that initially induces vorticity, given by a collec-
poles. Each dipole is the limit of two vortex blobs of equal tion of vortex blobs, may later evolve into a configuration
but opposite strength as their separation vanishes; the limit of impulse vectors whose induced vorticity no longer ap-
is taken in a way that keeps the vortex dipole moment proximates the evolved vortices with the same accuracy.
equal to ẑ 3 m j. For a detailed description of how this happens and of ways

Note that an impulse blob is equivalent to a smoothed to prevent accuracy loss of the impulse discretization see
vortex dipole which uses the same cutoff function as im- Cortez [12]. This type of accuracy loss is not present in
pulse. This function provides the smoothing to approxi- the examples discussed in this paper.
mate the Biot–Savart integral with high accuracy. This
analysis validates the use of vortex cutoff functions in im- 5. BOUNDARY FORCES
pulse methods and shows that the relationship between
the cutoff radius and the initial particle separation needed The forces exerted by an elastic membrane on the fluid
for the convergence of vortex methods must be respected. are given by (see [19])
This relationship is typically of the form d 5 hq, where h
is the particle separation and q is a number such that 0 ,

F(x) 5 E f(s)d(x 2 x(s)) ds, (10)q , 1 (see [1, 6, 13]). If impulse is defined along a curve
and is normal to it, we can write m in local coordinates (s,
n) (tangent and normal to the curve, respectively) as (0, where s is the arclength parameter, x(s) is a parametriza-

tion of the boundary, f is the force density, and d is themn). Then the relation j 5 = 3 m implies that the vortex
sheet strength is the tangential derivative of the component two-dimensional Dirac delta function. Note that F is singu-
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lar since the integral is taken along a curve and d is two- points and the slope of the line tangent to the membrane
at the middle point. The curvature at the middle pointdimensional.

The force density is of the form f(s) 5 d(Tt̂)/ds, where is approximated by the curvature of the polynomial. No
additional work is required to find the slopes of the tangentT is tension and t̂ is the unit vector tangent to the boundary

(see [22]). We apply the product rule to the definition of lines since the impulse vectors are known to be normal to
the membrane at all times.force density to get

6. NUMERICAL EXAMPLES
f(s) 5

d(Tt̂)
ds

5
dT
ds

t̂ 1 T
dt̂

ds
5

dT
ds

t̂ 1 Tkn̂, (11)

In this section we present two numerical examples of
the motion of a massless, elastic membrane immersed in anwhere k is the curvature and n̂ is the outward unit vector
incompressible, inviscid fluid. The membrane is assumed tonormal to the boundary. Since in Euler flow tangential
move with the local fluid velocity and to be initially underforces will simply make the boundary slip and not affect
tension. We begin with a few comments on the time-step-the fluid, we conclude that f must be in the direction normal
ping procedure.to the boundary and dT/ds 5 0 along the membrane at

any moment in time. We emphasize that the tension is not
6.1. Time Stepping

constant in time. The forces are then found from the
At each time step we must update the particle positionsequation

and the impulse vectors as described by Eqs. (6) and (7).
We use the following time-splitting procedure:f(s) 5 Tkn̂. (12)

1. Since f j is a rate of change of impulse, Dt f j is the
In practice, the forces are found at points on the bound- impulse imparted by a constant force f j during one time

ary where impulse vectors are located. Each force vector step Dt. Given the current impulse vectors and particle
is associated with a piece of arclength corresponding to positions, add the effect of the forces at the beginning of
the discretization of the boundary. Equation (10) is discret- the time step:
ized by

m j r m j 1 Dtf j. (13)
F(x) 5 O

j
f jfd(x 2 x j),

2. Update the positions and impulse strengths:

where f j 5 f(x j)h j(t) and h j(t) is the discretization size of dx j

dt
5 u(x j) (14)

the jth particle. Each piece of arclength (the discretization
size) is thought of as a rubber band with a stiffness constant dm j

dt
5 2(=u)Tm j. (15)and a rest-length. Denote by h j

0 the rest-length correspond-
ing to h j(t), then the tension at x j is defined by the equation

The unit normal vectors needed to add the effect of
the forces are found by updating and normalizing vectorsT(x j) 5 Hs(h j(t) 2 h j

0)/h j
0 , h j(t) . h j

0 ,

0, h j(t) # h j
0 , initially perpendicular to the boundary. Vectors normal to

the boundary which are evolved using Eq. (15) remain
normal to the boundary [12].where s is a stiffness constant. We will only consider the

A Runge–Kutta method of order 5 was used to solvecase when all hj
0 are equal.

Eqs. (14)–(15). The numerical results were compared withFor inviscid flow, the tension must be constant along the
results from an iterative method in which the configurationmembrane at any instant in time. To enforce this condition
at the end of the time step was the one used to calculatefor equal h j

0 , the boundary points x j must be equally dis-
the forces acting during that step. This comparison showedtributed at the end of every time step. This is accomplished
no significant differences and so we opted to use the proce-by placing a cubic polynomial between two consecutive
dure described above for its simplicity.boundary points matching the slope of the line tangent to

the membrane at those points and by moving one of the
6.2. Example 1: An Ellipse Moving under Tension

points along this curve to the appropriate location. The
initial point in this process is chosen arbitrarily. The first example begins with the membrane in the shape

of the ellipse (3x/2)2 1 y2 5 1 (see Fig. 2). This curveThe curvature in Eq. (12) is also found using a cubic
polynomial to interpolate the boundary. This time the poly- was discretized with 240 equally spaced points yielding a

discretization size h 5 2.204 3 1022. The rest-length of allnomial is chosen to match the location of three adjacent
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nal N particles. We define the error e(xN , x2N) to be the
maximum of the distances between corresponding parti-
cles. The ellipse problem was solved up to time T 5 5.76
using Dt 5 0.16 and 0.08, as well as three levels of refine-
ment of the discretization size, those corresponding to 120,
240, and 480 particles. The maximum distance between the
120 particles common to all runs was calculated at times
t 5 3.2, 4.48, and 5.76. These times yield results that are
representative of the entire motion. The results, Tables I
and II, show that as the time step decreases, the errors
also decrease. It is also evident from the tables that for a
small enough time step, the errors decrease by about a
factor of 4 when the discretization size is halved, indicatingFIG. 2. Initial configuration for Example 1.
second-order convergence. This reflects the fact that the
midpoint rule is being used to approximate the line integral
needed to compute the forces along the membrane.

Throughout the motion of the membrane, two quantitieselements was set to half the initial discretization size, and
the stiffness s was set to As. The cutoff radius d (for fd) was that must remain invariant are the area inside the mem-

brane and the total energy. Since the fluid is incompress-fixed at 0.12.
The motion of the membrane as it goes through one ible, the area of the region bounded by the membrane must

remain constant in time. In addition, the kinetic energy ofcycle (from vertical to horizontal and back) is depicted in
Fig. 3. Although the membrane appears to return to its the fluid must balance the changes in the elastic energy of

the membrane. Thus, another invariant of the motion isinitial configuration, there is no confirmation that the mo-
tion is periodic, starting from the given initial conditions. the total energy: kinetic plus elastic.

The kinetic energy, is given by KE 5 1/2 o m j ? u(x j)One might ask the question: is the membrane elliptical for
t . 0? The eccentricity of ellipses of constant area defines (see [7]), while the elastic energy is EE 5 (s/2) o (h j(t)

2 h j
0)2/h j

0 , when h j(t) . h j
0 , and zero otherwise. Note thattheir arclength. The graph of eccentricity versus arclength

for ellipses of area equal to the area enclosed by the initial the kinetic energy depends explicitly on the cutoff function
fd since u does. The approximate conservation of area andmembrane is shown as a solid line in Fig. 4. The eccentricity

of an ellipse is defined as [1 2 (a/b)2]1/2, where a and b energy over a period of time long enough for the membrane
to go through more than two cycles is shown in Fig. 5. Atare the minor and major axes, respectively. If we assume

that the membrane remains elliptical for all time, its eccen- t 5 10, both quantities are still conserved to within 0.5%
of their initial values (for Dt 5 0.008, d 5 0.12, and h 5tricity can be calculated at every step and plotted against

the arclength. At time t 5 0 the ellipse corresponds to the 2.204 3 1022). We found that the relative deviation of area
and total energy from their initial values was proportionalpoint labeled A in Fig. 4. As the membrane moves and

becomes circular the eccentricity decreases to zero (point to the time step. The slight changes of these invariants are
a consequence of the interpolation procedures during theB) and then increases back to point A when the membrane

becomes elongated horizontally. The plot moves back to redistribution of points on the boundary and can be re-
duced by the use of better interpolation methods. In prob-point B and finally back to point A to complete one cycle.

The results for 0 # t # 4.48 shown in Fig. 4 and the lems where interpolation is not required, the solution of the
Hamiltonian system (6)–(7) (for f j ; 0) with Runge–Kuttaconvexity of the region inside the membrane validate our

assumption. We conclude from the figure that the mem- methods has been shown to conserve area and kinetic
energy to an accuracy of 1 3 1027 with comparable timebrane is approximately elliptical during the motion.

We now present numerical evidence of the convergence steps [7].
The effect of different cutoff radii was studied by solvingof the method. Each particle used to represent the bound-

ary is associated with a piece of the membrane whose the problem using several values of d. The membrane was
first discretized using 480 particles corresponding to a dis-length we call the discretization size. Suppose the initial

discretization size is h (corresponding to N particles) and cretization size of h 5 1.102 3 1022. The motion of the
ellipse shown in Fig. 3 is representative of the motionsthe solution is found up to a time T . 0. We then solve

the problem again with h/2 as the discretization size (corre- observed for various values of d between 0.02 and 0.12.
The main observation is that the period of the motion issponding to 2N particles) and compare the positions of

the N particles in the first run with the positions of the sensitive to the choice of cutoff radius as illustrated in Fig.
6. The periods shown in the figure were computed basedcorresponding particles in the second run; that is, those

particles which have the same initial positions as the origi- on the local maximum of the eccentricity. As d decreases,
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FIG. 3. Motion of the membrane of example 1 for time t 5 0 2 4.48 with Dt 5 0.008.
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TABLE II

Errors for Dt 5 0.08 at t 5 3.2, 4.48, and 5.76

Dt 5 0.08

t 5 3.20 t 5 4.48 t 5 5.76

e(x120 , x240) 0.4427E-3 0.3032E-3 1.0943E-3
e(x240 , x480) 0.1084E-3 0.0743E-3 0.2633E-3
Error ratio 4.08 4.08 4.16

the rest-length of all elements was set to half the initial
discretization size. The stiffness s was set to As for all ele-
ments and the cutoff radius d was fixed at 0.12.

The motion of the membrane for time 0 through 5.4 and
Dt 5 0.004 is seen in Figs. 8 and 9. In this example, as well
as the first one, the initial impulse field was identically

FIG. 4. Eccentricity versus arclength. The solid line is the graph for
zero. It is the forces created by the initial membrane con-ellipses of fixed area equal to the initial area enclosed by the membrane;
figuration that get the motion started by introducing im-the dots are points obtained for the motion of the membrane in Example 1.
pulse along the membrane. Of the two invariants, the en-
ergy is typically more sensitive than the area to the
boundary treatment. In this example the energy was con-the velocities induced at a point by nearby particles are
served to within 4% of its initial value and area to withinlarger and the result is a shorter period. The figure indicates
0.5% of its initial value for times up to 5.4.that as d R 0 the period converges to some p0 . Assuming

In Fig. 8 one can detect waves propagating along thethe period p satisfies p 5 p0 1 Cdc and using the three
boundary from right to left. These get started when theleft-most points, we can extrapolate the data to find
initially indented portion of the boundary moves out. Thep0 P 4.018.
first frame of Fig. 9 shows the waves beginning to travel
back and new waves forming as the left side of the mem-6.3. Example 2: A Nonconvex Membrane
brane slightly vibrates. These new waves have frequency

The initial setup for the second example consists of a components essentially of the same size as the original
membrane in a shape that simulates a water balloon being wave. We observe that while the waves are on one side of
poked with a finger (see Fig. 7). When we remove the the membrane, the other side remains fairly smooth and
finger, the strong forces on the indented part of the bound- circular. This smoothness gets disturbed only when several
ary make this portion move faster than the rest, creating waves have formed and interacted with one another. By
waves which propagate along the boundary. The exact then, the radial distance to the smooth part of the boundary
shape of the initial membrane is given in polar coordinates slightly oscillates around a constant value.
by x(u) 5 r(u) cos(u) and y(u) 5 r(u) sin(u), where Since the forces are normal to the boundary, the impulse
r(u) 5 1 2 a;J (1 2 10q3 1 15q4 2 6q5), q 5 2u/f on the field at the beginning of each time step is also normal to the
right half plane, and r(u) 5 1 on the left half plane.

The boundary was discretized using 300 equally spaced
particles for a discretization size of h 5 1.92 3 1022 and

TABLE I

Errors for Dt 5 0.16 at t 5 3.2, 4.48, and 5.76

Dt 5 0.16

t 5 3.20 t 5 4.48 t 5 5.76

e(x120 , x240) 0.5338E-3 0.7033E-3 1.651E-3
e(x240 , x480) 0.2006E-3 0.2750E-3 0.5631E-3

FIG. 5. Relative change of invariants of Example 1 for 240 particlesError ratio 2.66 2.56 2.93
and Dt 5 0.008.
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FIG. 6. Variation of period of the ellipse as a function of cutoff radius d. Data for h 5 1.102 3 1022 and Dt 5 0.008.

boundary. As m̃ evolves with Eq. (15), it remains normal to is a rate of change of impulse, the impulse field at any time
represents the accumulation of forces up to that time. Asthe boundary (see [12]). Figure 10 shows the impulse field

at times t 5 1.2 and t 5 5.0. For clarity, the vectors have a consequence, the size of the impulse vectors generally
increases in time (since most of the time, force on anybeen scaled by a factor of 2 and only every other vector

is shown. The forces on the right side of the membrane piece of boundary points inward) even though the discreti-
zation size stays near but below its initial value. The growthpoint outward during a short, initial time interval. This

causes the impulse vectors to grow outwardly first and of the impulse vectors is observed in Fig. 10.
then to shrink gradually and reverse their direction as that
portion of the membrane becomes convex. The top of Fig. 7. CONCLUSIONS
10 shows some vectors are still in this process (more detail

We have shown that the approximation of the impulsehas been added to this portion of the figure). Since force
field in two dimensions is equivalent to approximating the
vorticity in the flow with vortex dipoles. We have also
shown the connection between the strength of an impulse
blob and the vortex dipole moment. The equation of mo-
tion for impulse automatically evolves the strengths of the
dipoles. A numerical method for the incompressible Euler
equations based on impulse was applied to problems in
which a fluid is surrounded by an elastic membrane. The
calculations show evidence of the convergence of the
method. Two attractive features of the method are that
the treatment of forces is simple and that it preserves well
at least two invariants of the flow: the area inside the
membrane and the total energy. Of course, the simple
nature of the treatment of the boundary forces is a result
of the assumption that the forces are constant during each
time step, and thus their impulse can simply be added to

FIG. 7. Initial membrane configuration of Example 2. the existing impulse at the beginning of each step. Since
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FIG. 8. Motion of the membrane of Example 2 for time t 5 0 2 2.4 with Dt 5 0.004.
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FIG. 9. Motion of the membrane of Example 2 for time t 5 2.8 2 5.8, with Dt 5 0.004.
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ations might include portions of the boundary with corners
or cusps. The treatment of such constraints requires a
mechanism which does not rely on curvature for computing
forces along singular portions of the boundary, since curva-
ture is infinite there. This feature is not part of the current
implementation of the method and will be the focus of
future work.

The effect of viscosity can be introduced in a straightfor-
ward manner as in vortex methods. The algorithm for the
viscous case is the same as the one outlined here with
an additional step for the diffusion of impulse since the
evolution equation for impulse is Eq. (4). The forces have
a tangential component as seen in Eq. (11) and thus the
impulse vectors would no longer remain normal to the
membrane. The diffusion process can be modeled by add-
ing a random walk to the particle positions as is done
frequently in vortex methods. However, since the bound-
ary configuration is used to calculate forces, we anticipate
that a deterministic method for the diffusion process will
produce more satisfactory results.
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